2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing

Towards a MOLGENIS based computational framework

Heorhiy Byelas*, Alexandros Kanterakis™ and Morris Swertz*
*University of Groningen, Netherlands
Email: h.v.byelas@rug.nl
TUniversiry Medical Centre Groningen, Netherlands
Email: a.kanterakis@rug.nl
iGroningen Bioinformatics Centre, Netherlands
Email: m.a.swertz@rug.nl

Abstract—High-throughput bioinformatics research is com-
plex and requires the combination of multiple experimental
approaches each producing large amounts of diverse data.
The analysis and evaluation of these data are equally complex
requiring specific integrations of various software components
into complex workflows. The challenge is to provide less
technically involved bioinformaticians with simple interfaces
to specify the workflow of commands they need while at the
same time scale up to hundreds of jobs to get the terabytes of
genetic data processed by recent methods.

Here, we present a computational framework for bioinfor-
matics which enables data and workflow management in a
distributed computational environment. Firstly, we propose a
new data model to specify workflow execution logic on available
network resources and components. Our model extends exist-
ing generic workflow and bioinformatics models to describe
workflows compactly and unambiguously. Secondly, we present
the implementation of our computational framework, which is
constructed as a computational cloud for bioinformatics using
open source off-the-shelf components. Finally, we demonstrate
applications of the framework on complex real-world bioinfor-
matics tasks.

Keywords-Bioinformatics, computational cloud, workflow
management system

I. INTRODUCTION

Workflow management systems are widely used in bioin-
formatics [1], [2], [3]. They describe computational steps of
analyses. Every step of the workflow can be an individual
operation or a set of thereof, which can be executed under
particular conditions. To deal with large data sets processed
in these workflows, computational operations and/or data are
often distributed across available computational resources
and executed in parallel. For bioinformaticians, a familiar
example of a single operation is a command-line invocation
of an analysis tool (e.g. plink, Beagle [4], [5]), which
performs the analysis on genotype/phenotype data. A manual
invocation of tools can be time consuming and error-prone,
especially, if it should be repeated many times per day
for different data sets and with different command-line
parameters (e.g. 12 analysis steps for 710 samples).

Besides computational steps, many other elements of
workflows should be specified. These elements include data
on which computations are performed, tools which take part

1066-6192/11 $26.00 © 2011 IEEE
DOI 10.1109/PDP.2011.53

331

in workflows and users who perform computations. Vari-
ous bioinformatics warehouses (e.g. Biowarehouse, Geno-
query [6], [7]) were constructed to manage heterogeneous
workflow elements. One of the main challenges in con-
structing a data warehouse is to keep its functionality not
too broadly defined. Otherwise, construction can take much
more efforts and time to implement than available. Still, the
constructed system should provide benefits promised and, in
a bioinformatics context, that is an automated user access to
available bioinformatics workflows, tools and data.

In this paper, we present a MOLGENIS-based Computa-
tional Framework (MCF) for bioinformatics. The framework
supports distributed workflow execution initialized from data
warehouses, which are generated using MOLGENIS [8]. The
main purpose of combining data and workflow management
is to enable customization of data warehouses for a particular
bioinformatics research, keeping their functionality as sim-
ple as possible. Additionally, the computational warehouse
back-end, as it is implemented now, can be easily replaced
by alternative computational infrastructures in the future.

The paper is structured as follows. Section II reviews
related work in workflow management systems for bioin-
formatics. Section III presents the data model used in the
system and explains decisions made. Section IV presents the
framework design and implementation. Section V presents
several applications of our system on real-world bioin-
formatics problems. Section VI discusses advantages and
limitations of the framework. Section VII concludes this
paper and outlines potential directions for future work.

II. RELATED WORK

The aim of this paper, introduced in Section I, is to
construct a data analysis framework, which combines com-
putational and data management for bioinformatics in a
single solution. Furthermore, we would like to perform our
computations in a distributed execution environment. Hence,
this section contains related work on workflow management
systems which are focusing on the bioinformatics domain.

An extensive review and taxonomy of generic grid en-
abled workflow management systems was done by J. Yu
etc. [9] in 2005. Some of the mentioned generic management

@) CO‘ pute
1(!) I
& SOCIety

systems, such as Taverna [1] or Kepler [10], are now widely
used in the bioinformatics domain. Taverna is a suite of
tools to design and executes workflows. It allows users
to integrate third-party software tools, which are described
as web services, into workflows. A set of services is not
fixed and new tools can be added by users. Workflows are
presented as graphs constructed using the Taverna visual
language. Additionally, Taverna allows users to monitor
workflow execution and examine the provenance of the data
described using Open Provenance Model [11]. Combining
Taverna with RAPID [12] allows to submit workflow jobs
to the computational grid. This is done by declaring jobs in
the RAPID specification file. How jobs are defined depends
on the used grid system.

Besides generic workflow management systems spe-
cialised for life-sciences, specific bioinformatics manage-
ment systems, such as Galaxy [2], have recently been devel-
oped. Galaxy is a web environment, where users can create
pipelines by combining a large variety of bioinformatics
tools. Each tool is thoroughly documented in the rich XML-
based language. Data can be uploaded, preprocessed and
visualised through the same environment, which includes
mechanisms for interactive workflow execution and his-
tory logging. It is targeted at genome-wide scale analysis
mainly for sequences, alignments and functional annotations.
Biopipe [13] can be considered as an alternative to Galaxy.
It offers a set of wrappers that build a common interface for
accessing existing bioinformatics tools and data.

Still, combining data and computation management in a
single system for bioinformatics, that enables data prove-
nance recording, is lacking. If compared with the work
listed above, we are constructing a Galaxy-like environment,
where jobs are specified in a RAPID-like fashion for execut-
ing in a computational cloud. The main aim of our workflow
language is to efficiently map and execute jobs on available
resources. This is discussed in detail next.

III. DATA MODEL

The main goal of our model is to unambiguously specify
a bioinformatics workflow execution in a distributed compu-
tational environment. The model includes the entire work-
flow specification and specifications for individual workflow
tasks. Hence, we divide our model into two structural layers
or interfaces. These are a job interface to specify a workflow
and a rool interface to specify an individual workflow
task. These interfaces are used in two main framework use
scenarios:
« specifying a workflow or job for execution, and
e adding a new tool to the framework tool repository.
Hence, analyses provided by the tool can be included
into workflows.
In our model, we are interested to specify any external
analysis tool, which can be invoked from a command line or
be run as an executable script (e.g. a shell or R-script [14]).

332

Tool

Command 151 Operation Data
<— K>——>
1+
Command Line Script Dependency Input Output
Figure 1. Tool model

The tool model, shown in Figure 1, is similar to the Galaxy
tool file [2], where a tool is described as a set of operations,
which it can perform. A tool operation can participate in
workflow execution. In contrast with the Galaxy description,
we do not have complex operation parameters in the model.
Instead, we treat an operation with different parameters as
a set of separate operations. A list of tool operations grows
depending on the complexity of the operations parameter-
isation. Still, the specification of an individual operation
remains simple.

Data

1

Job Step Operation

ko—>

— e S
#\

Condition Iteration

Figure 2. Job model

There are a number of reasons to keep the description of a
single operation as simple as possible. Firstly, bioinformati-
cians typically use only a subset of available tool features in
the majority of analysis workflows. Moving towards simpler
operations importantly lowers the bar for bench biologists
to be comfortable running operations without the need of
massive bioinformatics background knowledge. Secondly, it
is possible that a tool will be added to the framework by
a person, who is not an expert in all operation parameters,
but only interested in a particular execution scenario. In this
case, it would be easy to add a short operation specification
than an exhaustive list of all operation parameters. Further-
more, additional tool parameters can be added later as a
new operation. All parameters defined in the tool can be
reused by new operation definitions in good spirit of the
Don’t Repeat Yourself (DRY) principle. Inputs, outputs and

dependencies of a tool operation are specified explicitly to
assure the correctness of workflow and provide means for
dynamic error handling during workflow execution.

The second part of our model is the job model (see Fig. 2).
It describes a workflow as a sequence of steps. A step
consists of a set of operations. Operations of one step are
executed in parallel and do not depend on each other. An
operation can be a condition to specify that this operation
should be executed under some conditions, which are results
of the previous workflow step. The condition object class
is present in the model, but it was not used, so far, in the
designed workflows (Sec. V). Additionally, an operation can
be an iferation to specify repeating of the same operation
for different data (e.g. repeat the same operation for all
chromosomes).

In the job model (Figure 2), an operation object is a
concrete instance of a tool operation from the tool model
(Figure 1). Our description matches three first stages of the
RAPID [12] job specification. It specifies (1) data (e.g. files,
libraries, executables) to be transferred to the host where
the computation will take place, (2) command-lines to be
executed, and (3) data to be transferred back.

We would like to treat our computational environment
as a cloud. Computational clouds are typically divided on
segments. Transferring large amounts of data between cloud
segments can easily become a bottleneck of a workflow
execution. Hence, computations should be performed close
to the data storage. However, as practice shows, transferring
gigabytes of data from a single machine to a computational
cluster is not a problem if one intends to run computationally
intensive analyses for several days. An example of a long-
duration workflow is given in Section V-A.

IV. MCF DESIGN AND IMPLEMENTATION

We started our domain analysis with considering several
business use cases and trying to derive conceptual ones
which cover all use cases to some extent. The list of
our business use cases includes genotyping and quality
checking [15], imputations on genetic data [16], SNP as-
sociation analysis [17] etc. We try to identify a sequence of
actions conducted by a final system user, i.e. a biologist or
bioinformatician, to carry out his research.

We end up with four conceptual user steps of a biologist
(researcher):

1) Log into the system

a) Log in as a researcher
b) See data available to you

2) Select a workflow

a) Select data
b) Select workflow parameters

3) Run a workflow and see its execution status
4) View results

a) Explore results

333

b) Download results, if you have permission

Besides a biologist, a bioinformatician (i.e. framework
administrator) is another actor in our business use-cases. He
is responsible to maintain the system, that is mainly add or
update data and tools in the framework. His actions look as
follows:

1) Log into the system

a) Log in as an administrator

b) See available data/tools
2) Add new data/tools

a) Set up new data/tools

b) Register new data/tools in the system database
3) Add a new workflow

a) Design a new workflow

b) Register a new workflow in the system database

We identified four user interfaces to support listed above
actions:

o I1: Job input interface, where a workflow can be

selected for execution,

e I2: Data interface, where results of the workflow are

shown,

o I3: Tool deployment interface, where a new tool can be

specified and uploaded,

o I4: Data deployment interface, where a new data can

be specified and uploaded.

All user interfaces are HTML-based interfaces generated
using MOLGENIS. They build the User Interface layer of
the framework.

The MCF architecture consists of three layers as it is
shown in Figure 3. These layers are:

User interface layer,

MCF Applicational layer, which contains the frame-
work logic, and

Infrastructure layer, which contains third-party compo-
nents for data and computational infrastructure.

The MCF Applicational Layer combines computational
and data management in a single solution. This is archived
by adding the computational back-end package (Compute
Manager) [18] to the data warehouse generated using MOL-
GENIS. Two subsystems communicate via a narrow inter-
face containing several methods. The core interface methods
are:

e void setJob (Job newJob)

e Job getJob (int 1ID)

MOLGENIS provides the data management interfaces
with simple "CRUD’ operations to track and trace metadata
(i.e. protocols, samples, experiments, samples), file attach-
ments to manage raw, intermediate and result data, and
domain specific extensions like ’data matrix’ operations to
help bioinformaticians to work with their data. Compute
Manager provides functionalities of a workflow and resource
manager of the computational cloud. Let us consider these
functionalities in detail.

AN

AN

Inputs TOolBioi-iformatic an Data Job Biologist Data/
Description Description Request Results
I [l 1 % F
7 % ~ ~
ul Tools Data Job Data
Layer Deployment Ul Deployment Ul ul ul
Tools Data Type ul
Repository Repository MOLGENIS Generator Data Manager
Application
Layer
Resource Compute Job Manager
Manager Manager
Infraf;;icrture File Server Tomcat GridGain SQL Server
Execution

Environment

Figure 3.

A. Data management

We built our data management on the MOLGENIS sys-
tem [8]. MOLGENIS is a model-driven system that auto-
generates from a data model described in XML to a fully
functional data platform including database back-ends, web
user interfaces for biologists and programmatic interfaces
for bioinformaticians. An example of the generated user
interface is shown in Figure 4.

MOLGENIS either generates a high-performance ’server’
edition, which requires software installation on a server
or cluster, or a limited ’standalone’ edition that runs on
a desktop computer without any additional configuration.
Both usages are shown in Section V. The database layer is
generated as SQL files with database CREATE statements
that are loaded into either MySQL (server), PostgreSQL
(server) or HSQLDB (standalone). The API layer is gener-
ated as Java files either served via Tomcat (server) or Jetty
(standalone). A Java class is generated for each data type
(e.g. aclass Gene). All data can be queried programmatically
via a central Database class. For example, the command
db.find (Gene.class) returns all Gene objects in the
database.

To enhance the performance of data loading in MOL-
GENIS, the ’batched’ update methods of Java DataBase
Connectivity (JDBC) package and ’multi-row-syntax’ of
MySQL are used. This allows to insert 10,000s of data
entries in a single command, that is 5 to 15 times quicker

Layered MCF architecture

Overview | (Subjects| [Traits m ‘Pruluculs‘ ‘Suﬂware‘ ‘Publicaﬂuns‘ |0mulugies|
Data

File wEdit vView » |44 44 1072 pp bb|

i
type Data =l
annotations | + -
name behaviaur I
Investigation |dentiication of QL for locomator activation and ansiety using related inbred strains BE and C584 = | *
RowType Individual =l
ColType Pherotype ~|*
ValueType | Decimal =i+
TotalRows | 367 e
TotalCols |3 e
Source BinaryFile == tﬂ 92

o]] o]

ile I44 44

phenatype 1-8 of 8 *> ™|

PCTT10 TOTDIST TOTREAR AMBEPIS AYGYELO PCTREST ACTFACT ANXFACT

N 138422 /B 38188 57 138 4316 47 00 192
LI 138423 1882] 5,741 67 15 ar4s B3 048 0.05
1-10 0'332 138474 172 3,569 108 117 3349 53.63 0.11 0,49
L4 138425 19,93 34664 70 13 345 5267 04z 007

140947 20,38 5,296.4 123 136 3/AE AT 178 .29

140943 17,57 2,689.8 91 a1 3728 s625 078 008

140944 30,27 4,108.2 63 141 4164 4638 061 1.29

141427 2807 34665 112 127 w4 1703 058

Figure 4.
screen)

An example of the generated user web interface (a part of the

than standard one-by-one updates and allows data loading
of 20k records/second on commodity desktop machines.
The Java/API is exposed with a SOAP/API, REST/API and
R/API, so MOLGENIS can also be accessed via web service
tools like Taverna, REST or R, respectively (accessible via
hyperlinks in the GUI).

Existing databases can be quickly enriched with a MOL-

334

GENIS front-end by generating data management infras-
tructure from their models. The standard generated platform
can be extended via plug-ins to integrate research specific
processing protocols. Obviously, the generator can be re-run
often to build a new data warehouse for a new research. All
this provides the database API we use as a data management
system for Compute Manager, most importantly the REST
system for retrieving and putting data sets via the data
deployment interface (I2 and 14).

We enhanced MOLGENIS with two new modules for this

project:

« We loaded our tool model inside MOLGENIS to gener-
ate the tool deployment interface (I3). Hence, end users
can configure new tools, their parameters and upload
binaries.

e We added a user interface plug-in to MOLGENIS
to generate the job input interface (I1) for workflow
enactments and monitoring of job completion, and data
interface (I12) for viewing results.

Now, we have all four required user interfaces and the
data management part of the system.

B. Computational management

Our computational infrastructure is organised as a ’cloud”
and implemented using the GridGain 2.1.1 development
platform [19]. The whole computational logic is located
at one cloud node, which is the MCF Compute Manager
node. The rest of the computational base is a standard
GridGain software deployed in a local network, cluster or
server. MOLGENIS data management modules, described
in Section IV-A, are also deployed on the MCF Compute
Manager node. The topology of our “cloud” is shown in
Figure 5.

Compute Manager [18] consists of two modules:

e Job Manager, which distributes jobs across Worker
nodes and monitors their executions, and

e Resource Manager, which starts and stops Worker
nodes on the cluster.

The Job Manager logic is rather straightforward and can
be easily adjusted for use in a specific cluster or server.
After a job object (see Section III) is received by Job
Manager, it is registered in the database and passed to the
Worker nodes for execution. There are two different kinds of
Worker nodes in the system. These are Resident Workers and
Extra Workers. Basically, these nodes are the same standard
GridGain nodes and differ only by name or a cloud segment.

Why do we need two different kinds of nodes in the
system, if these nodes have the same functionality? As we
mentioned in Section I, a workflow operation is an execution
of a bioinformatics analysis tool, which is invoked from
a command line. A usual output is files and a standard
command-line output or/and error. The difference between
two kinds of Worker nodes is in a way analysis tools

335

are invoked from them. Resident Worker starts a job by
submitting a shell script to a cluster job scheduler. In
contrast to Resident Worker, Extra Worker directly invokes
an analysis tool. A cluster scheduler can be circumvented in
this way.

Extra Workers are pre-started and stopped by Resident
Worker. Resident Worker receives a command from Resource
Manager and starts Extra Workers by submitting a script
to the cluster scheduler to start them. After being started,
Extra Workers communicate to Job Manager and register
themselves. In practice, it can take more time to pre-start
many Extra Workers for direct parallel execution of analysis
operations than submit scripts to a cluster scheduler to
execute the same operations. Furthermore, running many
Extra Workers in the system increases the network load on
the Job Manager node. Still, Extra Workers can be efficiently
used in the system having an advanced strategy to pre-start
them, that is planned to be developed in the future.

Resource Manager is required only if a computational
cluster is used in the system. Its logic is also straightforward
and directly depends on the policies of the cluster used. We
tested our framework on the Millipede HPC cluster [20],
which appears in the TOP500 supercomputers list [21]. This
cluster has a policy that any cluster job execution should not
exceed the ten days limit to assure availability of cluster re-
sources to all users. This means, that Resident Worker cannot
run longer that ten days either. In our current implementation
to keep a cluster as a part of our computational cloud,
Resident Worker starts a new Resident Worker node in some
time before it will be removed by the cluster administrator,
e.g. two days before the end of a ten-days period. The script
for starting a new Resident Worker is submitted to the cluster
scheduler and processed in some time depending on a cluster
load. Hence, we assure that at least one Resident Worker is
running on the cluster.

All information about execution (i.e. STARTED, ERROR
or DONE statuses of operations with timestamps) are saved
in the MOLGENIS database. Typically, files produced by
workflow operations are not sent to the Compute Manager
node and stay in a cluster or server. Therefore, they can
be used in other workflows and downloaded later by a
separate operation. If Workers in the cluster share one data
and environment space, Worker nodes in a local network
have their individual execution spaces. This means that
data for analysis should be transferred to these individual
nodes, tools and environment variable should be set-up
before the actual analysis will take place. Currently, many
administrative operations, such as deletion of unused files,
setting up environment variables, efc., are done manually in
the system.

Now, we include the Millipede HPC cluster and several
individual machines in our cloud implementation. However,
public computational clouds can also be added to the frame-
work. We tested our solution on Amazon EC2 [22], for

E> Compute manager node LAN
Job
MOLGENIS Resident
Resu::s/ <,E| Resource -a a Job
reports Manager Tools Manager [\ @0 ST

Cluster 1

Extra
Worker

Resident

Resident
Worker

t

Figure 5.

which GridGain provides an image. Consequently, Worker
nodes can be easily started on the Amazon EC2. Addi-
tionally, our computational back-end, which is built on
GridGain, can be replaced by another cloud or grid compu-
tational infrastructure, like e.g. DPU [23], or support several
of them.

In our framework, we can specify any pipeline consisting
of command lines or scripts. However, due to the nature
of workflows we considered so far, our system intended to
execute jobs which last from seconds and minutes to hours
and days, rather than jobs of milliseconds. Consequently, we
do not address an issue of a heavy network load on Com-
pute manager caused by messages with status information
received from Worker nodes. Job examples are discussed in
more detail further.

V. APPLICATIONS

To assess the feasibility and effectiveness of the proposed
solution, we conducted a number of studies on real-world
bioinformatics workflows. In this paper, we present two
dissimilar by computational intensiveness bioinformatics
analyses. These are an imputation of genetic data (Sec. V-A)
and SNP association analysis (Sec. V-B). Both of them
are regular analyses on genotype data, however, they vary
in a size of data for analysis and computational time. If
the imputation pipeline should be performed on the cluster,
the SNP association analysis can be performed on a local
machine as well.

A. Imputation pipeline

Our current imputation pipeline consists of 8 steps. Initial
files to be imputed are present in the plink binary format [4].
The result of the pipeline are imputed datasets in the same
format. Hence, biologists can continue to analyse imputed

336

Server 1

Resident
Worker

"\ Public Cloud 1
jmmm TRy (\ |

Colour legend: }
| [] Business logic !
| [[] GridGain provided infr. !
|
|
|

| [[J Data/Tools storage

} [] Next-time instances

The computational framework topology

data without any additional preparations. The actual impu-
tation is done using BEAGLE 3.0 [5]. The files are pre-
processed in the pipeline by the in-house developed software
for the TriTyper algorithm [17] and linkage2beagle [5] tools.
We run imputation on large datasets of 1000 - 10000 individ-
uals with a reference panel of 90 phased individuals (CEU
HAPMap). Much larger datasets (= 50000 individuals) are
requested to be processed in the near future.

The datasets are split during pre-processing on batches of
300 individuals to parallelize imputation execution without
losing the quality. To our knowledge, datasets of 300 individ-
uals can be imputed with a decent quality using BEAGLE.
All imputation batch jobs are generated in MOLGENIS and
submitted to the cluster scheduler as scripts by Resident
Worker (Sec. IV-B). The average time to impute a batch
of 300 individuals is about 3 hours on the Millipede cluster.
The whole current pipeline execution for dataset of several
thousand individuals takes about 1-3 days depending on the
cluster load.

Initially, we run the imputation workflow in parallel
on 22 Extra Worker nodes, where every Worker performs
imputation on a single chromosome without splitting it on
batches. The execution time of the whole workflow was
equal to the imputation time of the largest chromosome,
which is Chrl. The measured imputation time for the dataset
of 3000 individuals on the Millipede cluster was about 140
hours. The imputation time for the dataset of 10000 exceeds
the cluster job execution limit of 10 days. Therefore, the
dataset of 10000 individuals cannot be processed without
splitting into smaller parts.

Besides the execution time to run imputation, there are
disk storage and memory requirements. The imputed dataset
of 3000 individuals occupies about of 35 GB of the disk
space and temporary files during the pipeline execution grow

up to 100 GB. In our scenario, the whole input and output
data for this workflow stay on the cluster to make them
available for further analyses. Consequently, the data storage
issue should be taken into account if one likes to work
with many datasets. Additionally, memory swapping on the
cluster enormously increases the execution time. Imputing
our datasets using BEAGLE requires up to 8 GB of RAM
to avoid memory swapping. Millipede cluster nodes have
enough memory to avoid it, however, we had problems when
running this pipeline on some other clusters.

Overall, our conclusion is that large datasets should be
split into batches for imputation, even when we run analysis
on powerful machines. Datasets of about 3000 individuals
are feasible to process without splitting on the Millipede
cluster. However, there is a probability that a process with
a duration of several days would fail because of some
communication errors in the cluster or network. Imputing
large datasets with our pipeline on a personal computer is
not feasible so far.

B. SNP association analysis

In our second analysis example, we compare running
analysis on a local machine versus running it remotely
on the cluster. As it is shown in Section V-A, in practice
some bioinformatics analyses can be performed only on
the cluster. SNP association analysis can be performed on
a regular laptop having a MOLGENIS generated database
(Sec. IV-A) installed on it. However, how useful and efficient
is it? To answer this question, we run analysis locally having
1 Resident Worker (see Sec. IV-B) and remotely having 22
Extra Workers on the cluster. Running 22 Extra Workers for
such analysis is not practical. However, we would like to
compare executions assuming the ideal conditions on the
cluster and locally.

In our scenario, a biologist selects a group of people
of a certain age (e.g. > 40 years old) with a higher than
a normal blood pressure (e.g. > 140/100 mmHg) as a
case study. Another group of people of the same age, but
with a normal blood pressure (e.g. < 140/100 mmHg) is
selected as a control group. These two datasets containing
phenotype information are generated from a ’standalone’
MOLGENIS database. We assume that files with genotype
data for selected people are present on the disk. We run a
SNP association analysis using plink [4]. In this example,
the whole analysis pipeline consists of only one plink com-
mand, where command line parameters are also generated
in MOLGENIS. Later, a user can review results of analysis
as a graph on a generated Ul web page.

Running association analysis with plink on a dataset
of 500 individuals takes in average 3 seconds for one
chromosome on a local machine (Intel Core 2 Duo running
on 2.26 GHz with 4 GB RAM). Consequently, running this
analysis for 22 chromosomes takes about 1 minute. Running
the same analysis for one chromosome on the cluster took us

337

from 20 to 50 seconds depending on the cluster load, where
the actual plink execution took only 2 seconds. The rest of
the execution time was spent on invoking plink by Worker on
a cluster node and reporting results back. Here, the analysis
was run in parallel on 22 cluster nodes. Consequently, the
total execution time is also about 1 minute.

Overall, this analysis can be performed both on a cluster
and local machine. The execution durations were nearly the
same. To sum up, using a cluster to run this analysis makes
sense only if a user would like to repeat it with different
parameters for many datasets.

VI. DISCUSSION

In the beginning of our work, we identified the main
requirements for the future system. As such, the following
discussion of our findings is also structured along these
requirements.

Workflow management: In our framework, we combine
data, tools, resources and workflow management in a single
system. We are focusing on solving specific bioinformatics
tasks. Therefore, a number of tools and data formats in-
cluded into our framework is limited. We expect that adding
new tools and data types will not change our data model
significantly.

Performance and scalability: We included the millipede
cluster [20] and local network computers into our resource
infrastructure. We perform computationally intensive tasks
on the cluster. An execution on the cluster is hidden from
the user, who starts a workflow from the HTML-based
MOLGENIS interface. At this point of time, these resources
are sufficient to run our analyses. Public computational
clouds, such as Amazon EC2, can be included into the
system in addition. Also, we are considering to include the
dutch e-science grid [24] as an alternative computational
back-end.

Portability: MOLGENIS consists of industry standard
Java, MySql and Apache Tomcat technology. We use virtual
machines to enable easy deployment on other nodes than
our Compute manager node (see Section IV-B) if needed.

Technical issues in real-world settings: Executing work-
flows in a distributed environment brings an element of
uncertainty into a workflow’s successful completion. The
correct process termination does not ensure, that analysis
results are correct and present in the system. Therefore,
every workflow operation should contain flags which indi-
cate its correct completion. These flags are very operation-
dependent (e.g. a list of all output files and their expected
sizes). A second important issue is safety of bioinformatics
data. Some personal data should stay inside the institution
walls and, therefore, can be processed only there. Finally,
using third party tools in workflows limits data and processes
distribution. The maximum execution performance can be
achieved if data processing algorithms embed data and

process distribution over resources in the way it is done
e.g. in the FPGA programming.

VII. CONCLUSIONS

We have successfully demonstrated a model that makes
it achievable for non-expert bioinformaticians to deploy and
run compute jobs in a cloud. We have integrated this model
with existing biology data infrastructure MOLGENIS to
enable large scale data management, as well as, biologist
friendly user interfaces to explore data and results, and
track and trace computations. Finally, we have successfully
evaluated our new framework in exemplar biological appli-
cations of genotype imputation and genome-wide phenotype
association studies.

We would next like to integrate the even larger compu-
tations of the next-generation proteomics and sequencing
technologies, where we can profile all DNA of individuals
and then analyse genomic variation in 20 days. A second
development direction is to introduce advanced scheduling
and failed jobs resubmission algorithms into the framework
functionality.

ACKNOWLEDGMENT

We thank all our collaborators at the Dept. of Genetics,
University Medical Centre Groningen, in particular, we
thank Harm-Jan Westra and Lude Franke for developing the
TriTyper tool; Groningen Bioinformatics Centre, University
of Groningen; Netherlands Bioinformatics Center (NBIC),
BioAssist task forces for biobanking, sequencing and pro-
teomics and the Netherlands Proteomics Centre. Heorhiy
Byelas was supported by the Netherlands Proteomics Centre
(NPC-GM-WP1), Alexandros Kanterakis was supported by
the University of Groningen Ubbo Emmius Fund, and Morris
Swertz was supported by NWO (Rubicon Grant 825.09.008).

REFERENCES

[1] T. Oinn and M. Greenwood, “Taverna: lessons in creating
a workflow environment for the life sciences,” CONCUR-
RENCY AND COMPUTATION: PRACTICE AND EXPERI-
ENCE, vol. 18, pp. 1067 — 1100, 2005.

[2] T. J. Blankenberg D, “A framework for collaborative anal-

ysis of encode data: making large-scale analyses biologist-

friendly,” Genome Res., vol. 17, pp. 960 — 4, 2007.

[3] BioBike, “Biological integrated knowledge environment,”

2010, http://biobike.csbe.vcu.edu/.

[4] N. B. Purcell S, “Plink: a toolset for whole-genome as-

sociation and population-based linkage analysis,” American

Journal of Human Genetics, vol. 81, http://pngu.mgh.harvard.

edu/purcell/plink/.

[5] Y. Z. Browning B, “Simultaneous genotype calling and haplo-

type phase inference improves genotype accuracy and reduces

false positive associations for genome-wide association stud-
ies,” The American Journal of Human Genetics, vol. 85, pp.

847-861.

338

(6]

(71

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

Y. P. Thomas J Lee, “Biowarehouse: a bioinformatics database
warehouse toolkit,” BMC Bioinformatics, 2006.

C. F. F. Lemoine, B. Labedan, “Genoquery: a new querying
module for functional annotation in a genomic warehouse,”
BMC Bioinformatics, 2008.

R. J. M.Swertz, “Beyond standardization: dynamic software
infrastructures for systems biology,” Nature Reviews Genetics,
pp. 235-43, 2007.

R. B. J. Yu, “A taxonomy of scientific workflow systems for
grid computing,” ACM SIGMOD Record, 2005.

I. Altintas and C. Berkley, “Kepler: Towards a grid-enabled
system for scientific workflows,” in in proceedings of GGF10-
The Tenth Global Grid Forum, 2004.

2010,

OPM, “Open provenance model,”

/lopenprovenance.org/.

http:

T. A. Koetsier J., “Rapid chemistry portals through engaging
researchers,” in Fifth IEEE International Conference on e-
Science, 2009, pp. 284-291.

R. K. Hoon S., “Biopipe: a flexible framework for protocol-
based bioinformatics analysis,” Genome Res, pp. 19041915,
2003.

M. J. CRAWLEY, The R book. Wiley, 2007.

S. M. Xiao Y., “A multi-array multi-snp genotyping algorithm
for affymetrix snp microarrays,” Bioinformatics, pp. 1459-67,
2007.

B. S. Browning B.L., “A unified approach to genotype im-
putation and haplotype-phase inference for large data sets of
trios and unrelated individuals,” Am J Hum Genet, pp. 210-
23, 2009.

W. C. Franke L., “Detection, imputation, and association
analysis of small deletions and null alleles on oligonucleotide
arrays,” Am J Hum Genet, pp. 1316-33, 2008.

MOLGENIS team, “Compute framework,” 2010, http://www.
molgenis.org/wiki/ComputeStart.

N. Ivanov, “Cloud development platform,” 2010, http://
gridgain.com/.

Millipede, “Clustervision opteron cluster,” 2010, http://www.
rug.nl/cit/hpcv/faciliteiten/index.

H. Meuer, “The top500 project,” 2010, http://www.top500.
org/.

Amazon, “Elastic compute cloud (amazon ec2),” 2010, http:
/laws.amazon.com/ec2/.

Astro-Wise, “Distributed processing unit,” 2010, http://www.
astro-wise.org/.

BIG Grid, “the dutch e-science grid,” 2010, http://www.
biggrid.nl.

