Biobank Search on Db /Ontocat based in Lucene Indexing
featuring Query Expansion using Ontologies

A. How to set up, configure & run

(Run molgenis project - molgenis4phenotype or in your own)

1. Download & install molgenis
(http://www.molgenis.org/wiki/MolgenisOnWindows,)

2. Download latest version of molgenis4phenotype from
http://www.molgenis.org/svn/molgenis projects/molgenis4phenotype

3. Set Build path (add Lucene/Ontocat/ols/owlapi/wsdl/ jars)
Make sure the following jar exist in your WEB-INF/lib directory:
= lucene-core-3.0.2.jar
* Jucene-demos-3.0.2.jar
= Jucene-highlighter-3.0.1.jar
= lucene-memory-3.0.2.jar
= ols-client.jar
= 0ontoCAT_v0.9.4-SNAPSHOT.jar
= opencsv-1.8.jar
= owlapi-bin.jar
= owlapi-src.jar
= wsdl4j-1.6.2.jar
= xpp3_min-1.1.4c.jar

Next select project properties = java build path-> Libraries=> Add
Jars—> select the jars mentioned above.

The libraries may also exist in the preconfigured Web App
Libraries, if so , the current step (3) can be skipped .

4. Select two of preconfigured existing sets of files, AnimalDB, lifelines, or
create your own. Currently adjusted for animalDB. Respective
configuration includes (consider the corresponding files if you want to
create your own) :

a. animaldb.molgenis.properties :

db_user = molgenis
db_password = molgenis
b. Create db:animaldb_pheno or yours as follows
mysql> create database animaldb_pheno;
mysql> grant all privileges on animaldb_pheno.* to molgenis@Iocalhost

identified by 'molgenis’; flush privileges; *

Biobank Search on Db /Ontocat based in Lucene Indexing featuring Query Expansion using Ontologies

1

C.

Plugin files already exist in molgenis4phenotype. For your own
project:

Add in molgenis_ui.xml the menu:

<!-- Lucene biobank search plugin -->

<menu name="submenu" position="Ieft" label="Indexing...">

<plugin name="DBIndex" label="DB Index and Search" type="plugins.Lucenelndex.DBIndexPlugin" />

<plugin name="GenericWizard" type="plugin.genericwizard.GenericWizard" label="Excel upload"/>

<plugin name="0OntoCatIndexPlugin2" label="Index OntoCAT" type="plugins.Lucenelndex.OntoCatindexPlugin2" />

</menu>

AnimalDBGenerate.java : run

AnimalDBUpdateDatabase.java: run

Files are now created. Replace created files with plugin’s files. Also
add LucenelndexConfiguration.properties in directory where all
.properties files leave
(/molgenis4phenotypeWorkspace/molgenis4phenotype)
Adjust in LucenelndexConfiguration.properties configuration file:
The number of DB fields in which the search “makes sense “
(mainly description fields). Also fill in the names of the fields.
Also select if you want to use ontologies in query expansion ' by
selecting useOntologiesinQueryExpansion = “true"”

Building & searching an index on database contents

Fill in data (in case of Animal Db project used). Run in server and
select from the menu “System Tasks—> Fill in Database ”. You can
also load latest animal db files from the same page.

Db is now ready to be search. From the main menu, select
“Indexing = DB Index & Search”.

The index is created in folder predefined in variable
LUCENE_INDEX_DIRECTORY. If it does not exist, the directory is
being created. If the directory has contents, the index is NOT
created. (Be sure to remove the contents for the new index).

After the creation of the index is complete you can search by
entering a term (or a sentence) in the search box.

1In case you use ontologies for query expansion you need to follow the
instruction in section B .

Biobank Search on Db /Ontocat based in Lucene Indexing featuring Query Expansion using Ontologies

2

If useOntologiesinQueryExpansion is selected (true), the query is
being expanded by terms retrieved from the downloaded ontologies that
leave in LUCENE_INDEX DIRECTORY

Building & searching an index on Ontocat contents
http://[sourceforge.net/projects/ontocat/

In order to build an index based on Ontocat contents some adjustments must be
made:

1. Set the VM arguments for OntoCatindexPlugin2.javato “-
Xms1024M -Xmx1024M”

(Select project=> Run As = Run configurations=> Arguments = Add in
VM arguments -Xms1024M -Xmx1024M)

2. Enter a desired term in order to retrieve from online ontology
resources and press “Build Ontocat Index”.

3. Theindex s created in folder predefined in variable
LUCENE_ONTOINDEX DIRECTORY. If it does not exist, the
directory is being created. If the directory has contents, the index
is NOT created. (Be sure to remove the contents for the new
index).

4. After the creation of the index (this may take a while depending on
the response of the ontology resources that Ontocat is speaking to
- EBI Ontology service) is complete you can search by entering a
term (or a sentence) in the search box.

B. How to run query expansion enabled search (using ontologies)
1) Download the ontologies from http://bioportal.bioontology.org/

You should download

(http://rest.bioontology.org/bioportal /ontologies/download/44307?applicatio
nid=4ea81d74-8960-4525-810b-falbaab576ff)

- Human Disease
(http://rest.bioontology.org/bioportal /ontologies/download/44309?applicatio
nid=4ea81d74-8960-4525-810b-falbaab576ff)

- NCI Thesaurus
(http://rest.bioontology.org/bioportal /ontologies/download/42838?applicatio
nid=4ea81d74-8960-4525-810b-falbaab576ff)

MeSH can be taken from biobank_search\WebContent\WEB-INF

Biobank Search on Db /Ontocat based in Lucene Indexing featuring Query Expansion using Ontologies | 3

2) Change the directory names:
- In DBIndexPlugin: LUCENE_INDEX_DIRECTORY, INDEX_CONFIGURATION

- In OntoCatIndexPlugin2: LUCENE_ONTOINDEX_DIRECTORY,
ONTOLOGIES_DIRECTORY

C. Lucene scoring

Lucene scoring uses a combination of the Vector Space Model (VSM) of
Information Retrieval and the Boolean model to determine how relevant a given
Document is to a User's query.

In general, the idea behind the VSM is the more times a query term appears in a
document relative to the number of times the term appears in all the documents
in the collection, the more relevant that document is to the query. It uses the
Boolean model to first narrow down the documents that need to be scored based
on the use of boolean logic in the Query specification.

Lucene also adds some capabilities and refinements onto this model to support
boolean and fuzzy searching, but it essentially remains a VSM based system at
the heart. For some valuable references on VSM and IR in general refer to the
Lucene Wiki IR references.

(see more in Appendinx B)

The score for a document given a query is the cosine of the angle formed
between the query vector and the document vector. The explain() method can be
used to show exactly what score calculation is for a given query and a given
document. So explanation() ‘s results (explanation. toString()) is presented to
the user.

Appendix

A. Information Retrieval with Query Expansion

General ideas:

Biobank Search on Db /Ontocat based in Lucene Indexing featuring Query Expansion using Ontologies | 4

1) Query expansion adds additional terms related to initial query terms to the
query. They shouldn’t be obligatory contained in a document (it would be
difficult to find a document in a database, containing every term of ["exercise-

nmon »”n

induced asthma", "chronic obstructive asthma with acute exacerbation”,

exercise-induced asthma (disorder)", "bronchial hypersensitivity", "chronic

obstructive asthma", "chronic obstructive asthma with status asthmaticus",

"bronchial hyperreactivity", "exercise induced asthma", "cough variant asthma",
"intrinsic asthma", "status asthmaticus”, "allergic asthma"]), that’s why they
should be appended by “OR” operator and can be assigned a lower weight. Thus
such query expansion usually changes the document ranking and consequently
the order of retrieved documents in the output, rather than significantly changes

the number of documents retrieved.

2) What terms to add? Obviously, the added terms should be very close to the
query term, that’s why in information retrieval as expansion terms usually
synonyms and children (terms, related to the query term by IS_A relationship)
are added. For example, if a user enters a broad query, such as lung disease,
query expansion will add documents concerning narrower terms, such as
pneumonia (children node),

3) Itis very important to have good ontologies at hand. Otherwise the expansion
terms may turn out to be very inaccurate. This is the problem with nonscientific
terminology: it’s practically impossible to construct an accurate ontology, due to
the vagueness of words of natural languages. Synonymy is very approximate
here and it’s difficult to determine where exactly in the ontology tree the term is
to be put. Scientific terminology is much better in this respect, because it is much
more exact. Of course there is still some inaccuracy, but query expansion can be
efficient.

4) Even if query expansion itself doesn’t improve the search, the query can be
made more precise: if some of the terms are found in the ontologies, they are put
in quotation marks, thus avoiding wrong results.

For example, if user doesn’t put quotation marks in his query: cystic lung disease,
then documents, containing disease will be retrieved:

(1) New diagnosis of heart disease since last study visit

(2) The score on the Unified Parkinson's Disease Rating Scale

During query expansion cystic lung disease will be found in ontologies and the
query will become: asthma “cystic lung disease” OR (...expansion terms...). This

Biobank Search on Db /Ontocat based in Lucene Indexing featuring Query Expansion using Ontologies | 5

query won'’t find those two irrelevant documents, because of the quotation
marks.

Ontologies
What ontologies to use?

It should be decided by the user in accordance with his query. He should be given
the list of ontologies to choose:

[would propose to choose among the following ontologies:

. Human Phenotype Ontology
. Human disease
. NCI Thesaurus

Medical Subject Headings

. International Classification of Diseases
(http://bioportal.bioontology.org/visualize /35686)

-Synonyms are graphical variants used in special cases

. Online Mendelian Inheritance in Man
(http://bioportal.bioontology.org/visualize /40398)

(The relation "manifestation of" may be useful, though too broad)

- Practically no synonyms

How to search the ontologies?

The search is performed by OntoCAT.

In this project I tried different ways of accessing the ontologies:
(1) Directly on BioPortal

(2) Downloading the ontologies on local computer

Biobank Search on Db /Ontocat based in Lucene Indexing featuring Query Expansion using Ontologies | 6

(3) Indexing them and searching in the index files

The third variant turned out to be significantly faster, so it is used in the project.

What is done?

The User first can index his database and ontologies and then search for relevant
database entries.

The User enters his query in the textbox, he can choose whether to expand the
query or not. Choose “Search with query expansion”, the query is expanded with
synonyms and children from indexed ontologies (Human disease, Human
Phenotype ontology? and NCI Thesaurus). Then Lucene performs the search in
the indexed database.

B. Lucene Indexing: scoring

Fields and Documents

In Lucene, the objects we are scoring are Documents. A Document is a collection
of Fields. Each Field has semantics about how it is created and stored (i.e.
tokenized, untokenized, raw data, compressed, etc.) It is important to note that
Lucene scoring works on Fields and then combines the results to return
Documents. This is important because two Documents with the exact same
content, but one having the content in two Fields and the other in one Field will
return different scores for the same query due to length normalization
(assumming the DefaultSimilarity on the Fields).

Score Boosting

Lucene allows influencing search results by "boosting" in more than one level:

* Document level boosting - while indexing - by calling document.setBoost()
before a document is added to the index.

* Document's Field level boosting - while indexing - by calling
field.setBoost() before adding a field to the document (and before adding
the document to the index).

* Query level boosting - during search, by setting a boost on a query clause,
calling Query.setBoost().

Biobank Search on Db /Ontocat based in Lucene Indexing featuring Query Expansion using Ontologies | 7

Indexing time boosts are preprocessed for storage efficiency and written to the
directory (when writing the document) in a single byte (!) as follows: For each
field of a document, all boosts of that field (i.e. all boosts under the same field
name in that doc) are multiplied. The result is multiplied by the boost of the
document, and also multiplied by a "field length norm" value that represents the
length of that field in that doc (so shorter fields are automatically boosted up).
The result is decoded as a single byte (with some precision loss of course) and
stored in the directory. The similarity object in effect at indexing computes the
length-norm of the field.

This composition of 1-byte representation of norms (that is, indexing time
multiplication of field boosts & doc boost & field-length-norm) is nicely
described in Fieldable.setBoost().

Encoding and decoding of the resulted float norm in a single byte are done by the
static methods of the class Similarity: encodeNorm() and decodeNorm(). Due to
loss of precision, it is not guaranteed that decode(encode(x)) = x, e.g.
decode(encode(0.89)) = 0.75. At scoring (search) time, this norm is brought into
the score of document as norm(t, d), as shown by the formula in Similarity.

C. Documentation

public class DBIndexPlugin
the plugin to index and search the database (with or without query expansion):

@param LUCENE_INDEX_DIRECTORY - empty directory to put index files in

public void buildIndexAllTables(Database db) -makes the index

public void SearchAllDBTablesIndex(Database db) —searches the index (in
“description” field)

public void ExpandQuery(Database db) -expands the query by calling
expand(OntologiesForExpansion)from OntocatQueryExpansion_lucene

public class OntocatQueryExpansion_lucene

Biobank Search on Db /Ontocat based in Lucene Indexing featuring Query Expansion using Ontologies | 8

public List<String> parseQuery(String query) —parses the query by ignoring the
punctuation, splitting the query by ‘‘, Boolean operators, reading phrases in
quotation marks as a single unit. Calls public List<String> chunk (List<String>
words)

public List<String> chunk (List<String> words) - chunks the query (List<String>
words) into all possible n-grams (combinations of subsequent query words) (n
ranges from 1 to words.size())

public void expand(List<String> ontologiesToUse) - finds expansion terms in
ontologiesToUse. For every n-gram of the chunked query searches it in
ontologies, if found, adds expansion terms to initial query list

public String output(List<String> parsed) - constructs a new query of the initial
query list, adding expansion terms with lower weight, using the same Boolean
operators and quotes (if any) as in user query.

public class OntoCatlndexPlugin2
the plugin that indexes and searches the ontologies

@param LUCENE_ONTOINDEX_DIRECTORY - empty directory to put index files
in

@param ONTOLOGIES_DIRECTORY - the directory, where the ontologies are
stored

@param ontologyNamesMap - the list of ontologies and the correspondence
between ontology names and file names containing them

public String SearchIndexOntocat(String query, List<String> ontologyLabels) -
searches the query in the ontologies with names ontologyLabels. Returns a string
“term:expansion term1; expansion termz2;... expansion termN;”

public void buildIndexOntocat() - builds the ontology index. Pairs
(term:expansion) are stored for each term of each ontology

Biobank Search on Db /Ontocat based in Lucene Indexing featuring Query Expansion using Ontologies | 9

Biobank Search on Db /Ontocat based in Lucene Indexing featuring Query Expansion using Ontologies | 1

